中证网讯(记者 蒋洁琼)日前,滴滴出行联合浙江大学交通工程研究所发布“中国主要城市交通可靠性分析报告”,利用滴滴出行大数据,制定了一系列测算交通可靠性的量化指标,并对全国40座一、二、三线城市的交通可靠性进行分析排名。
浙江大学交通工程研究所研究员陈喜群博士表示,城市道路系统经常受到随机因素的影响(交通事故、临时交通管制、突发自然灾害等),给居民出行带来极大的不确定性。同时随机因素降低了交通运行的可靠性,对城市交通功能的发挥和城市发展产生了不利的影响。简单地说,交通可靠性可以反映出路网的拥堵波动情况,居民出行随时间和空间的规律,随机因素对周围路网和整个城市路网的影响,特殊地点(如火车站,机场等)附近的路网交通情况等。
在此之前,交通可靠性主要由出行者的经验来判断,比如从自己家到公司,一般需要多长时间,出行者一般都有个基本判断。但这一时间是否准确,受到交通可靠性程度的影响,如果出门碰上交通事故,或者遭遇下雪天气,那原本预计的出行时间就可能大大延长;如果路上意外情况很少,这一时间也可能大大缩短。
如何对交通可靠性进行量化?对此,陈喜群博士的研究团队结合滴滴大数据,将指定城市划分为了1公里乘以1公里的正方形网格区域,每次出行都是从出行者所在的区域出发,抵达目的地所在的区域后结束。举例而言,早上7点半,一名乘客从家所在的A区域出发,前往公司所在的D区域结束。通过记录这一行程,可以计算出乘客从A到D区域所行驶的距离,以及所花费的时间。而借助滴滴大数据,可以计算出在一定的时间内,所有从A到D区域的乘客相关数据,再扩展为整个道路网络上的多个区域,从而计算出道路网络交通可靠性。
在此基础上总结出五大量化指标:网络自由流行程时间率(NFTTR)、网络平均行程时间率(NTTR)和网络规划行程时间率(NPTTR),分别代表着道路完全畅通时每公里行驶时间、平均状况下每公里行驶时间,以及为保证准时到达目的地的每公里规划时间。通过这三大指标,研究人员总结出了“网络缓冲行程时间率(NBTR)”及其指数NBTRI,两者数值越高,代表相应的交通可靠性程度越低。
|